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A �nite volume solver for 1D shallow-water equations applied
to an actual river
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SUMMARY

This paper describes the numerical solution of the 1D shallow-water equations by a �nite volume
scheme based on the Roe solver. In the �rst part, the 1D shallow-water equations are presented. These
equations model the free-surface �ows in a river. This set of equations is widely used for applications:
dam-break waves, reservoir emptying, �ooding, etc. The main feature of these equations is the presence
of a non-conservative term in the momentum equation in the case of an actual river. In order to apply
schemes well adapted to conservative equations, this term is split in two terms: a conservative one which
is kept on the left-hand side of the equation of momentum and the non-conservative part is introduced
as a source term on the right-hand side. In the second section, we describe the scheme based on a Roe
Solver for the homogeneous problem. Next, the numerical treatment of the source term which is the
essential point of the numerical modelisation is described. The source term is split in two components:
one is upwinded and the other is treated according to a centred discretization. By using this method for
the discretization of the source term, one gets the right behaviour for steady �ow. Finally, in the last
part, the problem of validation is tackled. Most of the numerical tests have been de�ned for a working
group about dam-break wave simulation. A real dam-break wave simulation will be shown. Copyright
? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we focus on the resolution of the 1D shallow-water equations. These equa-
tions model the free-surface �ow in rivers. They are deduced from the conservation of mass
and momentum for an incompressible free-surface �uid under the assumptions of hydrostatic
pressure and uniform distribution of the velocity along the vertical axis.

This set of equations is used for a large range of applications related to free-surface �ows,
as for instance: dam-break wave, reservoir emptying, �ooding, etc. These applications present
di?erent features:

• very fast unsteady �ow with dry areas for the dam-break wave simulation;
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2 N. GOUTAL AND F. MAUREL

• quasi-steady �ow in case of reservoir emptying with occurrence of dry areas;
• steady �ow in rivers.

The purpose of this work is to build numerical methods designed to handle the above-
mentioned features. We present here a resolution of the 1D shallow-water equations in the
case of an actual river by a �nite volume scheme based on the Roe solver.

In the case of a rectangular channel with a �at bottom, the shallow-water equations are
equivalent to the homogeneous isentropic Euler equations. Therefore, it is natural to apply
standard methods developed for these equations. We have chosen a �nite volume scheme based
on a Roe Solver because this scheme is widely used [1–8] and has shown its robustness in
various applications.

However, in the case of an actual river, because of the slope of the bottom and the variation
of the river width, the pressure term becomes a non-conservative term. Up to now, little work
has been devoted to the numerical treatment of the source term in the case of an actual
river. In order to apply the scheme adapted to the case of a rectangular channel, this non-
conservative term has been split in two terms: the �rst one is written in a conservative form
on the left-hand side (LHS), the second one leads to a source term on the right-hand side
(RHS). It is necessary to solve diJcult source terms for this method. In particular, one of
the main diJculties to achieve is that a �ow ‘at rest’ stays ‘at rest’ without any perturbation
in case of complex geometry.

This paper is organised as follows. In the �rst section we introduce the set of equations
chosen to model free-surface �ow in a river and we give its main features. In the second
section we describe the scheme used for the homogeneous problem. In the third section
we deal with the numerical treatment of the source terms. Finally, in the fourth section
the problem of validation is tackled. Some numerical results obtained with the code MAS-
CARET are given. Most of the numerical tests have been de�ned for a European work-
ing group about dam-break wave simulation (Concerted Action on Dam-Break Modeling
(CADAM)).

2. THE 1D SHALLOW-WATER EQUATIONS

The 1D free-surface �ows in rivers (see Figure 1) are governed by the shallow-water equa-
tions. They result from a vertical integration of the Navier–Stokes equations under the as-
sumption that the �uid is incompressible and the pressure hydrostatic.

The set of equations is in terms of discharge Q(x; t) and hydraulic section S(x; t):

@S
@t

+
@Q
@x

= 0 (1)

@Q
@t

+
@
@x

(
Q2

S

)
+ gS

@Z
@x

= − gSJ (2)

where Z(x; t) is the free-surface level, S(x; t) is the hydraulic section, Q(x; t) is the discharge,
g is the gravity, J the friction head loss given by J = (Q2)=(K2S2R4=3

h ); Rh is the hydraulic
radius and K the Strickler friction coeJcient.

In case of a rectangular channel with a constant width and a �at bottom, the set of
Equations (1) and (2) is equivalent to the isentropic Euler equations. The non-conservative
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FINITE VOLUME SOLVER FOR 1D SHALLOW-WATER EQUATIONS 3

Figure 1. Schematic diagram of river, illustrating discharge Q(x; t) and hydraulic section S(x; t).

term gS((@Z)=(@x)) can be expressed as a conservative one gh((@h)=(@x)) (in this particu-
lar case S=Lh(x; t) where h(x; t) is the water depth), so that all the classical �nite volume
schemes developed for the Euler equations can be used.

However, for actual applications, the previous assumptions are no more valid and we have
to deal with a non-conservative term gS((@Z)=(@x)) which is the integrated source. For this,
two paths can be followed:

• The �rst one is to split this term in two parts. The conservative part equivalent to a
pressure term, is written on the LHS; accordingly classical �nite volume techniques can
be applied and the non-conservative part (terms due to the bottom slope and to the
variation of the channel width) is introduced on the RHS as a source term. Therefore,
this splitting is based upon numerical instead of physical consideration.

• The second one is to keep this non-conservative term gS((@Z)=(@x)) on the LHS in order
to keep a physical picture of the problem. Therefore, dealing with the term gS((@Z)=(@x))
necessitates the development of an adapted scheme in the framework of �nite volume
discretization [9–14].

We have chosen the �rst method because it allows one to use the same scheme as the one
used for the shallow-water equations in the case of rectangular channels. The main drawback
of this method is having to deal with source terms (terms due to the bottom slope and to the
variation of the channel width) that are not physical. Consequently, the modelisation of these
source terms must be performed in such a way that no arti�cial energy due to the bottom
slope and to the variation of the channel width appears.

The term gS((@Z)=(@x)) can be rewritten by introducing a pressure term P(x; S) =
g
∫ y

0 S(x; z)dz, where y is the water depth equal to y=Z − Zf , Zf being the bottom level.
In fact,

@P(x; S)
@x

= gS
@Z
@x

+ g
∫ y

0

(
@S(x; z)
@x

)
z
dz − gS @Zf

@x
(3)

Equations (1) and (2) can be rewritten by introducing Equation (3):
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+
@Q
@x

= 0 (4)
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dz − gS dZf
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− gSJ (5)
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4 N. GOUTAL AND F. MAUREL

The system de�ned by Equations (4) and (5) now reads:

@W (x; t)
@t

+
@F(x;W )

@x
=G(x;W ) (6)

with

W =
(
S
Q

)
F(x;W ) =




Q

Q2

S
+ P(x; S)




G(x;W ) =




0

g
∫ y

0

(
@S(x; z)
@x

)
z
dz − gS dZf

dx
− gSJ




Remarks:

• The terms F(x;W ) and G(x;W ) depend on x and W .
• To get a well-de�ned problem, it is necessary to add initial and boundary conditions.

If the hydraulic section S is strictly positive, the system of equations de�ned by Equation
(6) is strictly hyperbolic. The Jacobian matrix reads:

DF(W; x) =




0 1

−Q2

S2 +
(
@P(x; S)
@S

)
x

2
Q
S


 (7)

by setting

C=

√(
@P
@S

)
x
; DF(W; x) =

(
0 1

c2 − u2 2u

)

The eigenvalues are: �1 = u+ c; �2 = u− c and associated eigenvectors:

r1 =

(
1

u+ c

)
; r2 =

(
1

u− c

)

3. THE NUMERICAL SCHEME

In the �rst section, we present the numerical scheme for the homogeneous problem. The
second section is devoted to the numerical treatment of the source terms.

3.1. Notations and de.nitions

The 1D domain Q is divided into N cells Ci = [xi−1=2; xi+1=2]. The centre of Ci is called xi.
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FINITE VOLUME SOLVER FOR 1D SHALLOW-WATER EQUATIONS 5

The �rst and last cells are both half cells.

The time t belongs to the interval [0; T ] and the time step is denoted by Rt.

3.2. Finite volume discretisation for the homogeneous problem

The problem to be solved reads:


x∈Q; t ∈ [0; T ]; S is the boundary of Q

@W (x; t)
@t

+ divF(W; x) = 0

W (x; 0) =Wo(x)

boundary conditions on S

(8)

After integration of Equation (8) on Cix[tn; tn+1], for i∈ [1; M ], we obtain:

∫
Ci

(W (x; tn+1) −W (x; tn)) dx +
∫ tn+1

tn
(F(xi+1=2; W (xi+1=2; t))

−F(xi−1=2; W (xi−1=2; t)) dt= 0 (9)

Therefore, the �nite volume scheme is de�ned by:

Wn+1
i; h =Wn

i; h −
Rt

area(Ci)
(Fni+1=2 − Fni−1=2) = 0

Wn+1
i; h =

∫
Ci
W (x; tn+1) dx; W n

i; h =
∫
Ci
W (x; tn) dx

(10)

where

Fni+1=2 =
∫ tn+1

tn
F(xi+1=2; W (xi+1=2; t)) dt is the numerical �ux

Remark:

• Wn
i; h is an approximation of the mean value of the exact solution on the cell Ci at the

time step tn.

The �ux term Fni+1=2 is evaluated with a three-point scheme:

Fni+1=2 = (Wn
i ;W

n
i+1)

The choice of the function  is the key point for the whole de�nition of the scheme. Most
of �nite volume schemes developed to solve the shallow-water equations are based on Roe
scheme [1–3; 5–7] which is robust, easy to implement and widely used.
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6 N. GOUTAL AND F. MAUREL

Accordingly, we retain the Roe scheme to de�ne this function. It consists of:
 (Wn

i ;W
n
i+1) =F(Uex(0; Wi;Wi+1)) where Uex(";Ug; Ud) is the exact solution of a linearised

Riemann problem: 


@U
@t

+ Ã(Wg; Wd)
@U
@x

= 0

U (x; 0) =

{
Ug si x¡0

Ud si x¿0

(11)

The matrix Ã :R2 ×R2 → M2(R) must satisfy the following conditions:

1. Ã continuous,
2. Ã(Ug; Ud)(Ug −Ud) =F(Ug) − F(Ud);
3. Ã(Ug; Ud) diagonalisable with real eigenvalues.

The two �rst conditions imply that Ã(U;U ) =DF(U ) (consistancy).
Under these previous assumptions, the numerical �ux  (Ug; Ud) can be rewritten as:

 (Ug; Ud) = F(Ug) + Ã−(Ug; Ud)(Ud −Ug) (12)

 (Ug; Ud) = F(Ud) + Ã+(Ug; Ud)(Ud −Ug) (13)

 (Ug; Ud) =
F(Ug) + F(Ud)

2
− 1

2 |Ã(Ug; Ud)|(Ud −Ug) (14)

Remarks:

• The time step for this scheme is classically limited by a Courant Friedrich–Levy
condition.

• This scheme is a �rst-order scheme in space and time.

Now, we are going to de�ne the Roe matrix. The main diJculties with the Roe scheme
are:

1. To �nd a matrix that satis�es the assumption 2. If it is not possible, this can be overcome
by using a method developed by Bu?ard et al. [15] and Eymard et al. [16]. Within this
scheme, it is possible to avoid building the Roe matrix.

2. The Roe scheme does not ful�l the entropy condition which ensures the convergence
towards a physical solution of the problem.

3.2.1. Construction of the Roe matrix. To determine the Roe matrix, we use a method
developed by Roe [17; 18] for the Euler equations.

This method is based on the use of a parameter vector chosen in such a manner that U and
F(U ) are homogeneous functions of degree 2 of W . By comparison with the Euler equations,
the parameter vector is equal to:

W =

( √
S

u
√
S

)
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FINITE VOLUME SOLVER FOR 1D SHALLOW-WATER EQUATIONS 7

Therefore, the Roe matrix is de�ned by:

Ã(Wg; Wd) =
(

0 1
c̃ − ũ2 2ũ

)
with ũ=

ug
√
Sg + ud

√
Sd√

Sg +
√
Sg

and

c̃=
P(Sg; x) − P(Sd ; x)

Sg − Sd

The eigenvalues of the Roe matrix are:

�̃1 = ũ+ c̃; �̃2 = ũ− c̃
We can associate the following eigenvectors:

r̃1 =
(

1
ũ+ c̃

)
r̃2 =

(
1

ũ− c̃
)

If Wg = &1;gr̃1 + &2;gr̃2 and Wd = &1;d r̃1 + &2;d r̃2, the �ux is totally de�ned by:

 (Wg; Wd) =
F(Ug) + F(Ud)

2
− 1

2 (|ũ+ c̃|(&d;1 − &g;1)r̃1)

+ (|ũ− c̃|(&d;2 − &g;2)r̃2) (15)

3.2.2. The entropy correction. One of the main drawbacks of the Roe solver is that it does
not satisfy the entropy condition. It can allow non-entropic stationary discontinuity near the
sonic points. To avoid this problem, it is necessary to modify the �ux computation near the
points where an eigenvalue �m=1;2(W̃ ) is close to zero.

Several possibilities are available. We have chosen the entropic correction de�ned by
Leveque [19].

�m(W̃ ) is modi�ed by �m(Wd)

(
�m(W̃ ) − �m(Wg)
�m(Wd) − �m(Wg)

)

3.3. Source terms
Source terms play an important role in the shallow-water equations. Their numerical treatment
necessitates much care in order to avoid a dramatic loss of accuracy; for instance, �at water
initially at rest starts moving arti�cially. It might also prevent the convergence to a real steady
state at constant discharge.

The 1D shallow-water equations admit two main kinds of source terms:

• Source term linked to the geometry. This term is due to the bottom gradient and to the
variation of the river width and comes from the splitting of the term gS((@Z)=(@x)). It
reads: (

@P(x; S)
@x

)
z=cte

=
(
@P(x; S)
@x

)
S=cte

+
@P(x; S)
@S

(
@S
@x

)
z=cte

• The friction term: −gSJ where J = (Q2)=(K2S2R4=3
h )
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8 N. GOUTAL AND F. MAUREL

The discretization is an essential and diJcult step of the numerical scheme which �nally
must satisfy the following:

• Water at rest must stay at rest (no perturbation on the discharge).
• Good convergence towards a steady state (constant discharge free of oscillations).

Two paths can be followed in order to approximate the source terms
∫∫

cixRt
B(x;W n) dx dt:

• A point-wise approximation leads to approximate the previous term by: CiRtB(xi;W n
i ).

This simple method does not allow the two �rst criteria to be met because the discretiza-
tion of the source term is not compatible with the upwind discretization of the pressure
term.

• An upwind approximation similar to that used for the pressure term on the LHS.

In the literature, few papers concern the upwinding of the source terms. This problem has
been tackled by Vasquez-Cendon [20] for the 2D shallow-water equations and for the 1D
shallow-water equations with a locally rectangular channel [21] and an approximated conser-
vation property has been established (the idea is equivalent to the notion of ‘well balanced
scheme’ developed by Greenberg and Leroux [10]). Thus, we have adapted this method for the
1D shallow-water equations for an actual river without any assumption on the form of the sec-
tion. We shall demonstrate that in case of an actual river, a mixed discretization (upwinded
and centred) of the source term must be applied to obtain the approximated conservation
property.

3.3.1. The upwinding of the source terms. We recall the upwinded technique developed by
Vasquez-Cendon. More details are given in Reference [20].

To �nd the upwind �ux, the source terms are projected on the eigenvectors basis X̃ (W ) of
the Roe matrix.

We denote:

• *(W; x) the components of the source term G(x;W ) in this basis.
• Ṽ the diagonal matrix of the eigenvalues of Ã=X (W̃ )ṼX−1(W̃ ).
• Ṽ+ the diagonal matrix of the positive eigenvalues of Ã.
• Ṽ− the diagonal matrix of the negative eigenvalues of Ã.

G(x;W ) =X (W̃ ) · *(W; x) =X (W̃ ) · (ṼṼ−1)*(W; x)

By using the relations between Ṽ+; Ṽ− and |Ṽ|, we obtain:

G(x;W ) = X (W̃ ) · Ṽ+Ṽ−1 · *(W; x) + X (W̃ ) · Ṽ−Ṽ−1*(x;W )

= X (W̃ ) ·
[

1
2

(I + |Ṽ|Ṽ−1)
]
X (W̃ ) ·G(X;W )

+X (W̃ ) ·
[

1
2

(I − |Ṽ|Ṽ−1)
]
X (W̃ ) ·G(X;W ) (16)
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FINITE VOLUME SOLVER FOR 1D SHALLOW-WATER EQUATIONS 9

By analogy with the numerical treatment of the �ux in the LHS, we de�ne two �ux functions
Wl and Wr

Wl = 2X (W̃ ) ·
[

1
2

(I + |Ṽ|Ṽ−1)
]
X (W̃ ) ·G(X;W ) (17)

Wr = 2X (W̃ ) ·
[

1
2

(I − |Ṽ|Ṽ−1)
]
X (W̃ ) ·G(X;W ) (18)

The contribution of the source terms is evaluated in each cell i by:

• a part from the right interface
∫ xi+1=2

xi
Wr dx

• a part from the left interface
∫ xi
xi−1=2

Wl dx

3.3.2. Mixed discretization of the source terms. In the previous section, three di?erent source
terms have been de�ned because it allows them to be discretized in separate ways:

(1) S1 =
(
@P(x; S)
@x

)
S=cte

(2) S2 =
@P(x; S)
@S

(
@S
@x

)
z=cte

(3) S3 =
Q2

K2S2R4=3
h

Term (1) is approximated by a centred discretization. The contribution on cell i is:∫ xi+1=2

xi−1=2

S1(xi;Wi) dx

Terms (2) and (3) are upwinded following the previous technique. Therefore the contribution
on cell i of the source S2 and S3 is:∫ xi+1=2

xi
Wr dx +

∫ xi

xi−1=2

Wl dx with

Wr = 2X (W̃ ) ·
[

1
2

(I − |Ṽ|Ṽ−1)
]
X (W̃ ) · (G2(xi+1=2; Wi;Wi+1) +G3(xi+1=2; Wi;Wi+1))

Wl = 2X (W̃ ) ·
[

1
2

(I + |Ṽ|Ṽ−1)
]
X (W̃ ) · (G2(xi−1=2; Wi;Wi−1) +G3(xi+1=2; Wi;Wi−1))

with G2 = (0; S2) and G3 = (0; S3)

Conservation property. With this approximation, it is possible to demonstrate that a con-
servation property is satis�ed.

By application of the Roe Solver on the homogeneous system, we obtain:
For cell i:

X(Wi;Wi+1) =


 − c̃i+1=2

2
(Si+1 − Si)

(Pi+1=2(Si+1) + Pi+1=2(Si))=2
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X(Wi−1; Wi) =


 − c̃i−1=2

2
(Si − Si−1)

(Pi−1=2(Si) + Pi−1=2(Si−1))=2




Computation of source terms. In case of initial state of rest, the source terms are directly
linked to the variation of geometry.

On cell i; there are three contributions:

1. S2 at the interface i − 1=2;

Rt


− 1

2c̃i−1=2
(Pi−1=2(Si) − Pi−1=2(Si−1))

(Pi−1=2(Si) − Pi−1=2(Si−1))=2




2. S1 in the centre of cell i;

Rt
(

0
(Pi+1=2(Si) − Pi−1=2(Si))

)

3. S2 at the interface i + 1=2

Rt


− 1

2c̃i+1=2
(Pi+1=2(Si+1) − Pi+1=2(Si))

(Pi+1=2(Si+1) − Pi+1=2(Si))=2




By writing the �ux balance on cell i together with the computation of the source terms,
one obtains easily: Wn+1

i =Wn
i

4. NUMERICAL RESULTS

The numerical results presented here have been obtained with the MASCARET code de-
signed at EDF—LNH (ElectricitYe de France—Laboratoire National d’Hydraulique) where the
numerical scheme previously presented is implemented. The results are organized in three
parts.

In the �rst part, we consider analytical problems for which an exact solution can be com-
puted. In the second part, we present numerical results on a test-case which models a typical
singularity of a valley. The numerical results are compared with measurements on physical
models.

All the previous test-cases (analytical and experimental) have been de�ned for a working
group initiated by EDF—LNH in the framework of IAHR [22,23]. This working group has
gone on in a Concerted Action on Dam Break Model (CADAM), the aim of which is the
validation of software dedicated to dam-break wave simulation.

Finally, in the third part, a real-life application is presented for a dam-break wave
simulation.
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FINITE VOLUME SOLVER FOR 1D SHALLOW-WATER EQUATIONS 11

Figure 2. Flow over a bump in the case of transcritical �ow with a shock.

4.1. Analytical test-cases

The analytical test-cases are split into two parts:

1. Steady �ow

• Flow at rest in a rectangular channel with a variable width, variable bottom and without
friction.

• Flow over a bump. According to the boundary conditions, the �ow can be transcritical
with or without shocks, subcritical and supercritical.

2: Unsteady �ow

• Dam-break on a dry bottom in a horizontal rectangular channel with a constant width
and without friction (Ritter analytical solution).

The simulation of �ow at rest and �ow over a bump enables one to check that the source
terms are correctly evaluated. In the case of a �ow at rest, the upwinding of the source terms,
as we describe later, allows one to obtain a computed discharge both constant and zero valued.

Since the test of a �ow over a bump is more interesting than a �ow at rest, we present
the results of the test of a �ow over a weir. The crest of the weir is equal to 0:4 m. For this

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:1–19



12 N. GOUTAL AND F. MAUREL

Figure 3. Flow over a bump in the case of transcritical �ow.

case, the initial state is a constant water level equal to 0:4 m. At the inlet of the domain, the
discharge is imposed equal to 0:18 m3 s−1 and at the outlet, the water level is �xed equal to
0:4 m. Figure 2 shows the steady �ow obtained in the case of the above-mentioned boundary
conditions. These results have been obtained with a constant mesh equal to 0:25m. Therefore,
we can note that the weir is described with only four points (the slope of the weir is equal
0.4=0.25). The time step is �xed in respect of the CFL condition. It is worth noting that
the discharge (mass �uxes) is constant without any perturbation. Moreover, despite the steep
slope of the weir, the shock is quite well computed.

In order to check that the downstream boundary condition does not alter the water level
upstream the weir, a simulation has been performed by decreasing the �xed water level
downstream; the �ow becomes transcritical without shocks. In Figure 3, the computed results
are compared against the analytical solution and we note the right behaviour and the satisfying
accuracy of the computed �ow.

The unsteady �ow test-cases have been chosen because they include some of the diJculties
of an actual dam-break wave simulation; for instance, propagation over a dry bottom and
discontinuous initial water level. The initial problem is a Riemann problem:

• if x¿0; the water level and the discharge are equal to zero
• if x¡0; the water level is equal to 6 m and the discharge is equal to zero.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:1–19
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Figure 4. The Ritter test-case. Comparison between analytical solution and computed solution.
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Figure 5. In�uence of the mesh size.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:1–19



FINITE VOLUME SOLVER FOR 1D SHALLOW-WATER EQUATIONS 15

Figure 6. Geometry of the physical model.

The analytical solution includes a rarefaction wave that propagates upstream the initial dis-
continuity and a bore that propagates downstream over dry bed. In Figure 4, the comparison
between analytical and computed solutions is presented. We can note a good agreement be-
tween the two curves. These results have been obtained with a constant mesh size equal to
5 m and with a time step in respect of the CFL condition.

Figure 5 shows the in�uence of the mesh size on the solution. The accuracy is improved:
less di?usion for the rarefaction wave and better approximation of the bore
velocity.

4.2. Experimental test-cases

In the framework of an IAHR working group, the experimental test-cases have been achieved
by the IST (Lisboa), the UCL (Bruxelles) and by the MET (Louvain-La-Neuve). Each
test-case modelizes a typical singularity of a valley:

• Contraction of a channel to model a rock lock in a valley (IST).
• Sudden enlargement to model an outlet of the valley in a �ood plain (IST and MET).
• A channel with a 90◦ bend to model a curve in a river (UCL).

We present the results of the MASCARET code only in the case of a channel with a
constriction (see Figure 6) achieved by the IST ([23]).

The initial problem is a Riemann problem as in the Ritter test-case. The water level is
equal to 0:3 m. The friction term corresponds to a Strickler coeJcient of 80.

The numerical results are compared with the measurements at four gauges. Figure 7 shows
the comparison.

The mesh size is constant, equal to 0:4 m, and the time step corresponds to a CFL of 0.8.
Gauge 1 shows the propagation of the rarefaction wave in the reservoir. This rarefaction

wave is correctly approximated. On gauge 2, we remark on the propagation with a negative
velocity of a jump due to the constriction. The approximated solution models this discontinuity
well. Moreover, we can note that the time propagation (gauges 3 and 4) is well computed
which is essential for dam-break wave simulation.
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Figure 7. Comparison between the measurements and the approximated solution at the di?erent gauges.

Four gauges are located in the middle of the channel to record the water level.

1. Gauge 1: 1:00 m upstream the dam.
2. Gauge 2: 6:10 m downstream the dam.
3. Gauge 3: 8:60 m downstream the dam.
4. Gauge 4: 10:50 m downstream the dam.
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Figure 8. Water level at t= 1800 s and 7200 s.

4.3. Real dam-break wave simulation

The software described in the previous chapters has already been used to perform many
studies. In order to illustrate the complexity of such simulations, we will show the results
obtained on a dam-break simulation on an actual valley.

The features of this computation are:

• Main dam height = 80 m.
• Reservoir capacity = 4:8 × 108 M3.
• Valley length = 150 km.
• Three dams downstream the main dam: two of them resist all along the simulation and

the other collapses when the wave arrives.
• Initially, the valley downstream the main dam is dry except in the reservoirs.

In Figure 8, the water level at di?erent time steps is presented. We can note that dams 1
and 4 have already collapsed and dams 2 and 3 resist the �ow. The overtopping has been
modelled as a �ow over a weir.

In Figure 9, we remark on the important variations of the hydraulic section and of the
Froude number which can reach a value as high as 4. It illustrates very well the features
(large variations of hydraulic sections, very unsteady �ow) of dam-break wave simulation in
an actual valley.

5. CONCLUSION

Modelling free-surface �ows for applications such as dam-break wave simulation, reservoir
emptying and �ooding leads to the solution of a non-linear hyperbolic system with a non-
conservative term in the momentum equations. In order to be able to apply classical schemes
developed for hyperbolic systems, this non-conservative term is split in two terms: one con-
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Figure 9. Hydraulic section and Froude number at t= 1800 s and 7200 s.

servative on the LHS and the other one on the RHS. The main drawback of this method is
to have to deal with sti? source terms. One of the diJculties is to keep the equilibrium for
a steady �ow.

For the homogeneous problem, a Roe scheme is used. The source terms have been split
in two parts to allow a separate discretization. An upwinding scheme developed by Vasquez-
Cendon ([20]) has been applied to one of the two components, a centred discretization to the
other one.

This scheme allows us to check the constraints imposed by the applications:

• To converge to a steady state without perturbation on the discharge.
• To propagate a bore over dry areas.
• To deal with the hydraulic jump.

Numerical solutions have been represented on analytical test-cases. The results show that:

• in case of steady state, the equilibrium is correctly approximated,
• the scheme is suitable for propagation over dry areas.

Moreover, comparisons with measures on physical models con�rm the good behaviour of
the numerical scheme in the case of dam-break wave simulation. Finally, simulation of an
actual dam-break wave illustrates the robustness of the scheme and its ability to deal with the
problem of a dam-break wave simulation.
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